РефератБар.ру: | Главная | Карта сайта | Справка
Статистика. Реферат.

Разделы: Статистика | Заказать реферат, диплом

Полнотекстовый поиск:




     Страница: 7 из 9
     <-- предыдущая следующая -->

Перейти на страницу:
скачать реферат | 1 2 3 4 5 6 7 8 9 






Параметры уравнения регрессии оцениваются на вероятностную надежность. Для этого величина каждого из параметров сравнивается с соответствующей средней ошибкой выборки, то есть
, где
- расчетное значение критерия Стьюдента, а
- остаточное среднеквадратическое отклонение, характеризующее вариацию эмпирических значений результативного признака относительно соответствующих им теоретических значений (вариацию около линии регрессии).

Расчетное значение t критерия сравнивается с табличным значением для
степеней свободы и заданной вероятности. Если p=0,95
то табличное значение равно t=2,262, то есть
, следовательно, параметр а0 с вероятностью 0,95 надежен. Параметр а1 оценивается по формуле:
, где
- это показатель вариации факторного признака.
В нашем примере
удобнее всего рассчитывать по формуле:

Параметры уравнения регрессии надежны, следовательно, с вероятностью 0,95 можно утверждать, что полученное уравнение регрессии
объективно отражает форму зависимости между ценой и объемом продаж лука.
По данным регрессионного анализа можно рассчитать коэффициент эластичности, характеризующий пропорцию взаимосвязи между вариацией факторного и результативного признаков.

Коэффициент эластичности показывает, что с ростом цены на 1%, объем реализации лука снижается на 1,7%.

4. Измерения тесноты связи.
Методы измерения тесноты взаимосвязи условно делятся на непараметрические и параметрические.
Непараметрические методы применяются для измерения тесноты связи качественных и альтернативных признаков, а так же количественных признаков, распределение которых отличается от нормального распределения.
Для измерения связи альтернативных признаков применяются коэффициент ассоциации Дэвида Юла и коэффициент контингенции Карла Пирсона. Для расчета этих показателей применяется следующая матрица взаимного распределения частот.
a, b, c, d – частоты взаимного распределения признаков.



1 признак

2 признак

ДА

НЕТ

ДА

a

b

НЕТ

c

d


При прямой связи частоты сконцентрированы по диагонали a-d, при обратной связи по диагонали b-c, при отсутствии связи частоты практически равномерно распределены по всему полю таблицы.

Коэффициент ассоциации

Пример: проанализируем зависимость между полом и фактом совершения покупки посетителями магазина.



1 признак

2 признак

М

Ж

Итого

Купил

24

32

56

Не купил

16

28

44

Итого

40

60




Наблюдается очень слабая прямая связь между полом и фактом свершения покупки. Предельное абсолютное значение коэффициента может быть близко к единице.
Коэффициент ассоциации непригоден для расчета в том случае, если одна из частот по диагонали равна 0. В этом случае применяется коэффициент контингенции, который рассчитывается по формуле:

Коэффициент контингенции также указывает на практическое отсутствие связи между признаками (его величина всегда меньше Кас).
Если значения признака распределены более чем по 2 группам, то для определения тесноты связи применяют коэффициенты взаимной сопряженности признаков Пирсона, Чупрова и др.
Показатель Пирсона определяется по формуле
, где
- показатель взаимной сопряженности признаков, который рассчитывается на основе матрицы взаимного распределения частот.


1 гр.
2 гр.

3 гр.

Итого

1 гр.

s11

s12

s13

n1

2 гр.


s21

s22

s23

n2

3 гр.


s31

s32

s33

n3

Итого


m1

m2

m3




Пример: рассмотрим зависимость между величиной магазина и формой обслуживания.


Самообслуживание
Традиционное

Итого

Мелкие
магазины

12

45

57

Средние


19

10

29

Крупные


14

4

18

Итого


45

59






Коэффициент свидетельствует о наличии заметной связи между величиной магазина и формой его обслуживания. Более точным показателем тесноты связи является коэффициент Чупрова, который определяется по формуле:
, где
- соответственно число групп, выделенных по каждому признаку. В нашем примере:

Непараметрические методы измерения тесноты взаимосвязи количественных признаков были первыми из методов измерения тесноты взаимосвязи. Впервые попытался измерить тесноту связи в 30-ч годах 19 века французский ученый Гиррий. Он сопоставлял между собой среднегрупповые значения факторного и результативного признаков. При этом абсолютные значения заменялись их отношениями к некоторым константам. Полученные результаты ранжировались в порядке возрастания. О наличии или отсутствии связи Гиррий судил сопоставляя ранее по группам и подсчитывая количество совпадений и несовпадений рангов. Если преобладало число совпадений – связь считалась прямой. Несовпадение – обратной. При равенстве совпадений и несовпадений – связь отсутствовала.
Методика Гиррий была использована Фехнером при разработке своего коэффициента, а так же Спирменом при разработке коэффициента корреляции рангов.
Расчет коэффициента Фехнера.



Цена 1 кг
лука, руб.

Объем продаж,
кг

Знаки отклонений

Сравнение знаков







3

175

-2,5

59,1

н

3,5

200

-2

84,1

н

4

180

-1,5

64,1

н

4,5

150

-1

34,1

н

5

160

-0,5

44,1

н

5,5

120

0

4,1

с

6

85

0,5

-30,9

н

6,5

90

1

-25,9

н

7

50

1,5

-65,9

н

7,5

40

2

-75,9

н

8

25

2,5

-90,9

н


Коэффициент указывает на наличие весьма тесной обратной связи.
На ряду с коэффициентом Фехнера для измерения взаимосвязи количественных признаков применяются коэффициенты корреляции рангов. Наиболее распространенным среди них является коэффициент корреляции рангов Спирмена.
Пример: вычисление коэффициента Спирмена для измерения тесноты взаимосвязи между товарооборотом и уровнем издержек обращения в магазинах.



Однодневный товарооборот, тыс. руб.

Издержки
в % к товарообороту

Ранги

Разность рангов








18

20,5

1

4

-3

9

23

23,4

2

6

-4

16

29

21,2

3

5

-2

4

45

18,9

4

2

2

4

78

19,2

5

3

2

4

93

17,5

6

1

5

25

Всего




62





Коэффициент корреляции рангов может принимать значение в пределах от –1 (обратная связь, близкая к функциональной) до +1 (прямая связь, близкая к функциональной).
Непараметрические методы учитывают направления изменений значений признаков, но не зависят от того, насколько интенсивно колеблются значения результативного признака в результате изменения факторного признака. Это позволяют сделать параметрические методы.
Для измерения тесноты линейной взаимосвязи применяется коэффициент корреляции. Базовая форма коэффициента корреляции следующая:

Фактически, коэффициент корреляции – это среднее произведения нормативных отклонений:

Если связь между признаками отсутствует, то результативный признак не варьирует при изменении факторного признака, следовательно
. Такой же результат получается при сбалансированности сумм отрицательных и положительных произведений.
Обычно для расчета коэффициента корреляции применяются формулы, использующие те показатели, которые уже рассчитывались при определении параметров уравнения регрессии. Наиболее удобной для расчетов является формула:

Величина коэффициента корреляции свидетельствует о наличии очень тесной обратной связи между признаками. Качественная оценка тесноты связи дается с помощью шкалы Чедока.


Показатель тесноты связи

0,1-0,3

0,3-0,5

0,5-0,7

0,7-0,9

0,9-0,99

1,0

Характеристика связи


Слабая

Умеренная

Заметная

Тесная

Очень тесная

Функциональная



Для оценки значимости коэффициента корреляции применяют критерий t-Стьюдента, расчетная величина критерия определяется по формуле:

Табличное значение критерия t-Стьюдента:

Следовательно, параметр надежен.

Для измерения тесноты криволинейных зависимостей применяются универсальные показатели тесноты связи, коэффициенты детерминации, теоретические корреляционные отношения или индексы корреляции. Эти показатели построены на принципе соизмерения дисперсий результативных признаков.

При этом по правилу сложения дисперсий получается взаимосвязь между дисперсиями:
.
Коэффициент детерминации:

Теоретическое корреляционное отношение:
.
Для линейной связи величина теоретического корреляционного отношения равна коэффициенту корреляции.
Индекс корреляции, по сути, аналогичен теоретическому корреляционному отношению, его рассчитывают на основе правила сложения дисперсий, используя общую и остаточную дисперсии.

Индекс корреляции:

5. Множественная корреляция и регрессия.
Применяется для изучения влияния двух и более факторов на результативный признак. Процесс исследования включает несколько этапов.
Сначала проводится выбор формы уравнения взаимосвязи, чаще всего выбирается n-мерная линейная формула:
, так как легче считать и интерпретировать полученный результат.
Поскольку расчеты важны и трудоемки, важнейшее значение имеет отбор факторов для включения в регрессионную модель. На основе качественного анализа необходимо отбирать наиболее существенные факторы. На этапе отбора факторов, рассчитывается так же единичная матрица парных коэффициентов корреляции между признаками факторов, отобранных для включения в уравнение регрессии.



1






1





1













1








В уравнение регрессии не включаются оба или хотя бы один из тесно взаимосвязанных между собой факторов, коэффициент корреляции равен или превышает величину 0,8, это делается, чтобы избежать явления мультиколлинеарности, искажающего сущность исследуемого процесса в регрессионной модели.
После подстановки факторов в уравнение, проводятся расчеты его параметров по методу наименьших квадратов, и полученные результаты оцениваются на вероятностную надежность, путем сравнения каждого из параметров неизвестного с величиной соответствующей ошибке выборки. Ненадежные параметры исключаются из уравнений.
Все ненадежные параметры исключаются из уравнения регрессии, и расчеты повторяются до тех пор, пока все оставшиеся параметры или коэффициенты при неизвестных не будут надежны. Такой метод называется пошаговой регрессией. Затем рассчитывается множественный коэффициент детерминации.


Ряды динамики.

1.Понятие ряда динамики и классификация динамических рядов.
2.Обеспечение сопоставимости рядов динамики.
3.Определение среднего уровня временного ряда.
4.Система статистических показателей динамики.
5.Изучение основной тенденции развития, социально-экономического развития во времени.



     Страница: 7 из 9
     <-- предыдущая следующая -->

Перейти на страницу:
скачать реферат | 1 2 3 4 5 6 7 8 9 

© 2007 ReferatBar.RU - Главная | Карта сайта | Справка