Страница: 2 из 2 <-- предыдущая следующая --> | Перейти на страницу: |
№ фактора | Y | X1 | X2 | X3 | X4 | X5 | X6 |
Y | 1.00 | 0.52 | -0.22 | -0.06 | -0.23 | 0.44 | 0.12 |
X1 | 0.52 | 1.00 | 0.38 | 0.52 | 0.38 | 0.74 | 0.60 |
X2 | -0.22 | 0.38 | 1.00 | 0.91 | 1.00 | 0.68 | 0.74 |
X3 | -0.06 | 0.52 | 0.91 | 1.00 | 0.91 | 0.86 | 0.91 |
X4 | -0.23 | 0.38 | 1.00 | 0.91 | 1.00 | 0.67 | 0.74 |
X5 | 0.44 | 0.74 | 0.68 | 0.86 | 0.67 | 1.00 | 0.85 |
X6 | 0.12 | 0.60 | 0.74 | 0.91 | 0.74 | 0.85 | 1.00 |
Из таблицы 4 находим тесно коррелирующие факторы. Налицо мультиколлениарность факторов Х2 и Х4 . Оставим только один фактор Х2 . Так же достаточно высокий коэффициент корреляции ( 0.91 ) между факторами Х2 и Х3 . Избавимся от фактора Х3 .
5. Построение уравнения регрессии для абсолютных величин
Проведём многошаговый регрессионный анализ для оставшихся факторов : Х1 , Х2 , Х5 , Х6 .
а) Шаг первый .
Y = 12. 583 + 0 * X1 + 0.043 * X2 + 0.021 * X5 - 0.368 * X6
Коэффициент множественной корреляции = 0.861
Коэффициент множественной детерминации = 0.742
Сумма квадратов остатков = 32.961
t1 = 0.534 *
t2 = 2.487
t5 = 2.458
t6 = 0.960 *
У фактора Х1t-критерий оказался самым низким . Следовательно фактором Х1 можно пренебречь . Вычеркнем этот фактор .
б) Шаг второй.
Y = 12.677 - 0.012 * X2 + 0.023 * X5 - 0.368 * X6
Коэффициент множественной корреляции = 0.854
Коэффициент множественной детерминации = 0.730
Сумма квадратов остатков = 34.481
t2 = 2.853
t5 = 3.598
t6 = 1.016 *
У фактора Х6t-критерий оказался самым низким . Следовательно фактором Х6 можно пренебречь . Вычеркнем этот фактор .
в) Шаг третий .
Y = 12.562 - 0.005 * X2 + 0.018 * X5
Коэффициент множественной корреляции = 0.831
Коэффициент множественной детерминации = 0.688
Сумма квадратов остатков = 39.557
t2 = 3.599
t5 = 4.068
В результате трёхшаговой регрессии мы получили рабочее уравнение.
6. Анализ матрицы коэффициентов парных корреляций для относительных величин
№ фактора | Y | X1 | X2 | X3 | X4 | X5 | X6 |
Y | 1.00 | 0.14 | -0.91 | 0.02 | -0.88 | -0.01 | -0.11 |
X1 | 0.14 | 1.00 | -0.12 | -0.44 | -0.17 | -0.09 | 0.02 |
X2 | -0.91 | -0.12 | 1.00 | -0.12 | 0.98 | -0.01 | -0.38 |
X3 | 0.02 | -0.44 | -0.12 | 1.00 | 0.00 | 0.57 | 0.34 |
X4 | -0.88 | -0.17 | 0.98 | 0.00 | 1.00 | 0.05 | -0.05 |
X5 | -0.01 | -0.09 | -0.01 | 0.57 | 0.05 | 1.00 | 0.25 |
X6 | -0.11 | 0.02 | -0.38 | 0.34 | -0.05 | 0.25 | 1.00 |
В таблице выявляем тесно коррелирующие факторы. Таким образом, не трудно заметить достаточно высокий коэффициент корреляции между факторами Х2 и Х4. Избавимся от Х2
7. Построение уравнения регрессии для относительных величин
а) Шаг первый .
Y = 25,018+0*Х1+
Коэффициент множественной корреляции = 0,894
Коэффициент множественной детерминации = 0.799
Сумма квадратов остатков = 26,420
t1 = 0,012*
t2 = 0,203*
t3 =0.024*
t4 =4.033
t5 = 0.357*
t6 = 0.739 *
У фактора Х1t-критерий оказался самым низким . Следовательно фактором Х1 можно пренебречь . Вычеркнем этот фактор .
б) Шаг второй .
Y = e ^3.141 * X2^(-0.722) * X5^0.795 * X6^(-0.098)
Коэффициент множественной корреляции = 0.890
Коэффициент множественной детерминации = 0.792
Сумма квадратов остатков = 0.145
t2 = 4.027
t5 = 4.930
t6 = 0.623 *
У фактора Х6t-критерий оказался самым низким . Следовательно фактором Х6 можно принебречь . Вычеркнем этот фактор .
в) Шаг третий .
Y = e ^3.515 * X2^(-0.768) * X5^0.754
Коэффициент множественной корреляции = 0.884
Коэффициент множественной детерминации = 0.781
Сумма квадратов остатков = 0.153
t2 = 4.027
t5 = 4.930
В результате трёхшаговой регрессии мы получили рабочее уравнение :
Y =
0 | y8 | 10.6 | 0 | 0 | 2 | -1 | -0.4 | 0 | -0.4 | 1 |
|
| j | 2.2 | 0 | 0 | 0.5 | 1.5 | 0.3 | 0 | 0.3 | 0 |
|
y4- x1x1= 1
y5- x2x2= 0
y6- x3x3= 0
y7- x4x4= 1
y8- x5x5= 0
Ответ:оптимальное решение х*= (1; 0; 0; 10), т.е. х1*= 1, х2*= 0, х3*= 0, х4*= 1, х5*= 0.
Наименование продукта | Нормы расхода на 1 кг хлеба (по видам) |
| 1 | 2 | 3 | 4 |
мука 1 сорта, кг | 0.5 | 0.5 | 0 | 0 |
мука 2 сорта, кг | 0 | 0 | 0.5 | 0.5 |
маргарин, кг | 0.125 | 0 | 0 | 0.125 |
яйцо, шт. | 2 | 1 | 1 | 1 |
прибыль, за 1 кг | 14 | 12 | 5 | 6 |
Требуется определить суточный план выпечки хлеба, максимизирующий прибыль.
Pi | Бx | X0 | 14 | 12 | 5 | 6 | 0 | 0 | 0 | 0 | |
| | | x1 | x2 | x3 | x4 | x5 | x6 | x7 | x8 |
|
0 | x5 | 290 | 0.5 | 0.5 | 0 | 0 | 1 | 0 | 0 | 0 | 580 |
0 | x6 | 150 | 0 | 0 | 0.5 | 0.5 | 0 | 1 | 0 | 0 | |
0 | x7 | 50 | 0.125 | 0 | 0 | 0.125 | 0 | 0 | 1 | 0 | 400 |
Страница: 2 из 2 <-- предыдущая следующая --> | Перейти на страницу: |
© 2007 ReferatBar.RU - Главная | Карта сайта | Справка |