Страница: 2 из 3 <-- предыдущая следующая --> | Перейти на страницу: |
II | 220-340 | 4 | 230 | 57,0 |
| | 11 | 260 | 55,0 |
| | 14 | 280 | 54,0 |
| | 6 | 290 | 62,0 |
ИТОГО: | 4 | 1060 | 228,0 |
В среднем на одно предприятие | 265 | 57,0 |
III | 340-460 | 3 | 340 | 53,0 |
| | 10 | 340 | 83,0 |
| | 19 | 380 | 88,0 |
| | 21 | 400 | 90,0 |
| | 22 | 400 | 71,0 |
| | 7 | 410 | 86,0 |
| | 1 | 420 | 99,0 |
| | 18 | 420 | 95,0 |
| | 13 | 430 | 101,0 |
ИТОГО: | 9 | 3540 | 766,0 |
В среднем на одно предприятие | 393,333 | 85,111 |
IV | 460-580 | 16 | 520 | 94,0 |
| | 9 | 550 | 120,0 |
| | 5 | 560 | 115,0 |
| | 20 | 570 | 135,0 |
ИТОГО: | 4 | 2200 | 464,0 |
В среднем на одно предприятие | 550 | 116,0 |
V | 580-700 | 12 | 600 | 147,0 |
| | 17 | 700 | 178,0 |
ИТОГО: | 2 | 1300 | 325,0 |
В среднем на одно предприятие | 650 | 162,5 |
ВСЕГО: | 22 | 8580 | 1873,0 |
Теперь по данным рабочей таблицы строим итоговую аналитическую таблицу:
№ группы | Группировкапредприятийпо численностиперсонала | Числопредприятий | Численностьперсонала | Выпускпродукции,млн. руб. |
| Всего | В среднем наодно предприятие | Всего | В среднем наодно предприятие | ||
I | 100-200 | 3 | 480 | 160 | 90,0 | 30,0 |
II | 220-340 | 4 | 1060 | 265 | 228,0 | 57,0 |
III | 340-460 | 9 | 3540 | 393,333 | 766,0 | 85,111 |
IV | 460-580 | 4 | 2200 | 550 | 464,0 | 116,0 |
V | 580-700 | 2 | 1300 | 650 | 325,0 | 162,5 |
ИТОГО: | 22 | 8580 | 390 | 1873,0 | 85,136 |
По данным аналитической таблицы мы видим, что с приростом объема продукции, средняя численность персонала на одно предприятие возрастает.
Значит, между исследуемыми признаками существует прямая корреляционная зависимость.
2. Строим расчетную таблицу:
№ группы | Группировкапредприятийпо численностиперсонала | Числопредприятий,f | Выпуск,млн. руб. | | |
| Всего | В среднемна однопредприятие |
| | | ||
I | 100-220 | 3 | 50,0 | 30,0 | -55,136 | 3039,978 | 9119,934 |
II | 220-340 | 4 | 228,0 | 57,0 | -22,135 | 791,634 | 3166,536 |
III | 340-460 | 9 | 766,0 | 85,111 | -0,025 | 0,000625 | 0,005625 |
IV | 460-580 | 4 | 464,0 | 116,0 | 30,864 | 952,586 | 3810,344 |
V | 580-700 | 2 | 325,0 | 162,5 | 77,364 | 5985,188 | 11970,376 |
ИТОГО: | 22 | 1873,0 | 85,136 |
| | 28067,195 |
Вычисляем коэффициент детерминации по формуле:
где- межгрупповая дисперсия, находящаяся по формуле:
- общая дисперсия результативного признака, находящаяся по формуле:
Теперь находим
Для каждой группы предприятий рассчитаем значение
и внесем в таблицу.
Находим межгрупповую дисперсию:
Для нахождения общей дисперсии, нужно рассчитать :
Вычисляем коэффициент детерминации:
Коэффициент детерминации показывает, что выпуск продукции на 88,9% зависит от численности персонала и на 11,1% от неучтенных факторов.
Эмпирическое корреляционное отношение составляет (по формуле(12)):
Это говорит о том, что связь между факторным и результативным признаками очень тесная, т.е. это свидетельствует о существенном влиянии на выпуск продукции численности персонала.
Задача №3.
Имеются следующие данные по двум предприятиям отрасли :
Предприятие | Реализовано продукции тыс. руб. | Среднесписочная численность рабочих, чел. |
| 1 квартал | 2 квартал | 1 квартал | 2 квартал |
I | 540 | 544 | 100 | 80 |
II | 450 | 672 | 100 | 120 |
Определите :
1.Уровни и динамику производительности труда рабочих каждого предприятия.
2.Для двух предприятий вместе :
(a)индекс производительности труда переменного состава;
(b)индекс производительности труда фиксированного состава;
(c)индекс влияния структурных изменений в численности рабочих на динамику средней производительности труда;
(d)абсолютное и относительное изменение объема реализации продукции во 2 квартале (на одном из предприятий) в результате изменения :
1)численности рабочих;
2)уровня производительности труда;
3)двух факторов вместе.
Покажите взаимосвязь между исчисленными показателями.
·Cодержание и краткое описание применяемых методов:
Индексы – обещающие показатели сравнения во времени и в пространстве не только однотипных (одноименных) явлений, но и совокупностей, состоящих из несоизмеримых элементов.
Будучи сводной характеристикой качественного показателя, средняя величина складывается как под влиянием значений показателя у индивидуальных элементов (единиц), из которых состоит объект, так и под влиянием соотношения их весов («структуры» объекта).
Если любой качественный индексируемый показатель обозначить черезx,а его веса – черезf, то динамику среднего показателя можно отразить за счет изменения обоих факторов (xиf), так за счет каждого фактора отдельно. В результате получим три различных индекса: индекс переменного состава, индекс фиксированного состава и индекс структурных сдвигов.
Индекс переменного состава отражает динамику среднего показателя (для однородной совокупности) за счет измененияиндексируемой величиныxу отдельных элементов (частей целого) и за счет изменениявесовf, по которым взвешиваются отдельные значенияx.Любой индекс переменного состава – это отношение двух средних величин для однородной совокупности (за два периода или по двум территориям):
(13)
Величина этого индекса характеризует изменение средневзвешенной средней за счет влияния двух факторов: осредняемого показателя у отдельных единиц совокупности и структуры изучаемой совокупности.
Индекс фиксированного состава отражает динамику среднего показателя лишь за счет измененияиндексируемой величиныx, при фиксировании весов на уровне, как правило, отчетного периода
:
(14)
Другими словами, индекс фиксированного состава исключает влияние изменения структуры (состава) совокупности на динамику средних величин, рассчитанных для двух периодов при одной и той же фиксированной структуре.
Индекс структурных сдвигов характеризует влияние изменения структуры изучаемого явления на динамику среднего уровня индексируемого показателя и рассчитывается по формуле:
(15)
В индексах средних уровней в качестве весов могут быть взяты удельные веса единиц совокупности (
Страница: 2 из 3 <-- предыдущая следующая --> | Перейти на страницу: |
© 2007 ReferatBar.RU - Главная | Карта сайта | Справка |