• экономическое прогнозирование, предвидение развития экономических процессов;
• выработка управленческих решений на всех уровнях
хозяйственной иерархии.
Следует, однако, иметь в виду, что далеко не во всех случаях данные, полученные в результате экономико-математического моделирования, могут использоваться непосредственно как готовые управленческие решения. Они скорее могут быть рассмотрены как «консультирующие» средства. Принятие управленческих решений остается за человеком. Таким образом, экономико-математическое моделирование является лишь одним из компонентов в человеко-машинных системах планирования и управления экономическими системами.
Важнейшим понятием при экономико-математическом моделировании, как и при всяком моделировании, является понятие адекватности модели,т.е. соответствия модели моделируемому объекту или процессу. Адекватность модели — в какой-то мере условное понятие, так как полного соответствия модели реальному объекту быть не может, что характерно и для экономико-математического моделирования. При моделировании имеется в виду не просто адекватность, но соответствие по тем свойствам, которые считаются существенными для исследования. Проверка адекватности экономико-математических моделей является весьма серьезной проблемой, тем более что ее осложняет трудность измерения экономических величин. Однако без такой проверки применение результатов моделирования в управленческих решениях может не только оказаться мало полезным, но и принести существенный вред.
Социально-экономические системы относятся, как правило, к так называемым сложным системам.Сложные системы в экономике обладают рядом свойств, которые необходимо учитывать при их моделировании, иначе невозможно говорить об адекватности построенной экономической модели. Важнейшие из этих свойств:
• эмерджентность как проявление в наиболее яркой форме свойства целостности системы, т.е. наличие у экономической системы таких свойств, которые не присущи ни одному из составляющих систему элементов, взятому в отдельности вне системы. Эмерджентность есть результат возникновения между элементами системы так называемых синергических связей, которые обеспечивают увеличение общего эффекта до величины, большей, чем сумма эффектов элементов системы, действующих независимо. Поэтому социально-экономические системы необходимо исследовать и моделировать в целом;
• массовый характер экономических явлений и процессов. Закономерности экономических процессов не обнаруживаются на основании небольшого числа наблюдений. Поэтому моделирование в экономике должно опираться на массовые наблюдения;
• динамичность экономических процессов, заключающаяся в изменении параметров и структуры экономических систем под влиянием среды (внешних факторов);
• случайность и неопределенность в развитии экономических явлений. Поэтому экономические явления и процессы носят в основном вероятностный характер, и для их изучения необходимо применение экономико-математических моделей на базе теории вероятностей и математической статистики;
• невозможность изолировать протекающие в экономических системах явления и процессы от окружающей среды, чтобы наблюдать и исследовать их в чистом виде;
• активная реакция на появляющиеся новые факторы, способность социально-экономических систем к активным, не всегда предсказуемым действиям в зависимости от отношения системы к этим факторам, способам и методам их воздействия.
Выделенные свойства социально-экономических систем естественно, осложняют процесс их моделирования, однако эти свойства следует постоянно иметь в виду при рассмотрении различных аспектов экономико-математического моделирования, начиная с выбора типа модели и кончая вопросами практического использования результатов моделирования.
3.2. Этапы экономико-математического моделирования
Процесс моделирования, в том числе и экономико-математического, включает в себя три структурных элемента: объект исследования; субъект (исследователь); модель, опосредующую отношения между познающим субъектом и познаваемым объектом. Рассмотрим общую схему процесса моделирования, состоящую из четырех этапов.
Пусть имеется некоторый объект, который мы хотим исследовать методом моделирования. На первом этапе мы конструируем другой объект — модель исходного объекта-оригинала. Этап построения модели предполагает наличие определенных сведений об объекте-оригинале. Познавательные возможности модели определяются тем, что модель отображает лишь некоторые существенные черты исходного объекта, поэтому любая модель замещает оригинал в строго ограниченном смысле. Из этого следует, что для одного объекта может быть построено несколько моделей, отражающих определенные стороны исследуемого объекта или характеризующих его с разной степенью детализации.
На втором этапе процесса моделирования модель выступает как самостоятельный объект исследования. Например, одну из форм такого исследования составляет проведение модельных экспериментов, при которых целенаправленно изменяются условия функционирования модели и систематизируются данные о ее "поведении". Конечным результатом этого этапа является совокупность знаний о модели в отношении существенных сторон объекта-оригинала, которые отражены в данной модели.
Третий этап заключается в переносе знаний с модели на оригинал, в результате чего мы формируем множество знаний об исходном объекте и при этом переходим с языка модели на язык оригинала. С достаточным основанием переносить какой-либо результат с модели на оригинал можно лишь в том случае, если этот результат соответствует признакам сходства оригинала и модели (другими словами, признакам адекватности).
На четвертом этапе осуществляются практическая проверка полученных с помощью модели знаний и их использование, как для построения обобщающей теории реального объекта, так и для его целенаправленного преобразования или управления им. В итоге мы снова возвращаемся к проблематике объекта-оригинала.
Моделирование представляет собой циклический процесс, т.е. за первым четырехэтапным циклом может последовать второй, третий и т. д. При этом знания об исследуемом объекте расширяются и уточняются, а первоначально построенная модель постепенно совершенствуется. Таким образом, в методологии моделирования заложены большие возможности самосовершенствования.
Перейдем теперь непосредственно к процессу экономико-математического моделирования, т.е. описания экономических и социальных систем и процессов в виде экономико-математических моделей. Эта разновидность моделирования обладает рядом существенных особенностей, связанных как с объектом моделирования, так и с применяемым аппаратом и средствами моделирования. Поэтому целесообразно более детально проанализировать последовательность и содержание этапов экономико-математического моделирования, выделив следующие шесть этапов: постановка экономической проблемы, ее качественный анализ; построение математической модели; математический анализ модели; подготовка исходной информации; численное решение; анализ численных результатов и их применение. Рассмотрим каждый из этапов более подробно.
3.2.1. Постановка экономической проблемы и ее качественный анализ.
На этом этапе требуется сформулировать сущность проблемы, принимаемые предпосылки и допущения. Необходимо выделить важнейшие черты и свойства моделируемого объекта, изучить его структуру и взаимосвязь его элементов, хотя бы предварительно сформулировать гипотезы, объясняющие поведение и развитие объекта.
3.2.2. Построение математической модели.
Это этап формализации экономической проблемы, т. е. выражения ее в виде конкретных математических зависимостей. Построение модели подразделяется в свою очередь на несколько стадий. Сначала определяется тип экономико-математической модели, изучаются возможности ее применения в данной задаче, уточняются конкретный перечень переменных и параметров и форма связей. Для некоторых сложных объектов целесообразно строить несколько разноаспектных моделей; при этом каждая модель выделяет лишь некоторые стороны объекта, а другие стороны учитываются, агрегировано и приближенно. Оправдано стремление построить модель, относящуюся к хорошо изученному классу математических задач, что может потребовать некоторого упрощения исходных предпосылок модели, не искажающего основных черт моделируемого объекта. Однако возможна и такая ситуация, когда формализация проблемы приводит к неизвестной ранее математической структуре.
3.2.3. Математический анализ модели.
На этом этапе чисто математическими приемами исследования выявляются общие свойства модели и ее решений. В частности, важным моментом является доказательство существования решения сформулированной задачи. При аналитическом исследовании выясняется, единственно ли решение, какие переменные могут входить в решение, в каких пределах они изменяются, каковы тенденции их изменения и т.д. Однако модели сложных экономических объектов с большим трудом поддаются аналитическому исследованию; в таких случаях переходят к численным методам исследования.
3.2.4. Подготовка исходной информации.
В экономических задачах это, как правило, наиболее трудоемкий этап моделирования, так как дело не сводится к пассивному сбору данных. Математическое моделирование предъявляет жесткие требования к системе информации; при этом надо принимать во внимание не только принципиальную возможность подготовки информации требуемого качества, но и затраты на подготовку информационных массивов. В процессе подготовки информации используются методы теории вероятностей, теоретической и математической статистики для организации выборочных обследований, оценки достоверности данных и т.д. При системном экономико-математическом моделировании результаты функционирования одних моделей служат исходной информацией для других.
3.2.5. Численное решение.
Этот этап включает разработку алгоритмов численного решения задачи, подготовку программ на ЭВМ и непосредственное проведение расчетов;
при этом значительные трудности вызываются большой размерностью экономических задач. Обычно расчеты на основе экономико-математической модели носят многовариантный характер. Многочисленные модельные эксперименты, изучение поведения модели при различных условиях возможно проводить благодаря высокому быстродействию современных ЭВМ. Численное решение существенно дополняет результаты аналитического исследования, а для многих моделей является единственно возможным.
3.2.6. Анализ численных результатов и их применение.
На этом этапе, прежде всего, решается важнейший вопрос о правильности и полноте результатов моделирования и применимости их как в практической деятельности, так и в целях усовершенствования модели. Поэтому в первую очередь должна быть проведена проверка адекватности модели по тем свойствам, которые выбраны в качестве существенных (другими словами, должны быть произведены верификация и валидация модели). Применение численных результатов моделирования направлено на решение практических задач.
Перечисленные этапы экономико-математического моделирования находятся в тесной взаимосвязи, в частности, могут иметь место возвратные связи этапов. Так, на этапе построения модели может выясниться, что постановка задачи или противоречива, или приводит к слишком сложной математической модели; в этом случае исходная постановка задачи должна быть скорректирована. Наиболее часто необходимость возврата к предшествующим этапам моделирования возникает на этапе подготовки исходной информации. Если необходимая информация отсутствует или затраты на ее подготовку слишком велики, приходится возвращаться к этапам постановки задачи и ее формализации, чтобы приспособиться к доступной исследователю информации.
Выше уже сказано о циклическом характере процесса моделирования. Недостатки, которые не удается исправить на тех или иных этапах моделирования, устраняются в последующих циклах. Однако результаты каждого цикла имеют и вполне самостоятельное значение. Начав исследование с построения простой модели, можно получить полезные результаты, а затем перейти к созданию более сложной и более совершенной модели, включающей в себя новые условия и более точные математические зависимости.
Понятие “модель” и “моделирование”.
С понятием “моделирование экономических систем” (а также математических и др.) связаны два класса задач:
1) задачи анализа, когда система подвергается глубокому изучению ее свойств, структуры и параметров, то есть исследуется предметная область будущего моделирования.
2) Задачи, связанные с задачами синтеза (получения ЭММ данной системы).
Модель – изображение, представление объекта, системы, процесса в некоторой форме, отличной от реального существования.
Различают физическое и математическое моделирование.
Таблица 4Классификация моделей.
Модели
Этапы практического моделирования.
1) Анализ экономической системы, ее идентификация и определение достаточной структуры для моделирования.
2) Синтез и построение модели с учетом ее особенностей и математической спецификации.
3) Верификация модели и уточнение ее параметров
4) Уточнение всех параметров системы и соответствие параметров модели, их необходимая валидация (исправление, корректирование).
Этап подгонки модели многократный.
Таблица 5Формальная классификация моделей.
Признак классификации
|
Модель |
1. Целевое назначение |
Прикладные, теоретико-аналитические |
2. По типу связей |
Детерминированные, стохастические |
3. По фактору времени |
Статические, динамические |
4. По форме показателей |
Линейные, нелинейные |
5. По соотношению экзогенных и эндогенных переменных |
Открытые, закрытые |
6. По типу переменных |
Дискретные, непрерывные, смешанные |
7. По степени детализации |
Агрегированные (макромодели), детализированные (микромодели) |
8. По количеству связей |
Одноэтапные, многоэтапные |
9. По форме представления информации |
Матричные, сетевые |
10. По форме процесса |
Аналитические, графические, логические |
11. По типу математического аппарата |
Балансовые, статистические, оптимизационные, имитационные, смешанные |
3.3. Классификация экономико-математических методов и моделей
Суть экономико-математического моделирования заключается в описании социально-экономических систем и процессов в виде экономико-математических моделей. Выше кратко рассмотрен смысл понятий «метод моделирования» и «модель». Исходя из этого экономико-математические методы следует понимать как инструмент, а экономико-математические модели — как продукт процесса экономико-математического моделирования.
Рассмотрим вопросы классификации экономико-математических методов. Эти методы представляют собой комплекс экономико-математических дисциплин, являющихся сплавом экономики, математики и кибернетики. Поэтому классификация экономико-математических методов сводится к классификации научных дисциплин, входящих в их состав. Хотя общепринятая классификация этих дисциплин пока не выработана, с известной степенью приближения в составе экономико-математических методов можно выделить следующие разделы:
• экономическая кибернетика: системный анализ экономики, теория экономической информации и теория управляющих систем;
• математическая статистика: экономические приложения данной дисциплины — выборочный метод, дисперсионный анализ, корреляционный анализ, регрессионный анализ, многомерный статистический анализ, факторный анализ, теория индексов и др.;
• математическая экономия и изучающая те же вопросы с количественной стороныэконометрия:теория экономического роста, теория производственных функций, межотраслевые балансы, национальные счета, анализ спроса и потребления, региональный и пространственный анализ, глобальное моделирование и др.;
• методы принятия оптимальных решений, в том числе исследование операций в экономике. Это наиболее объемный раздел, включающий в себя следующие дисциплины и методы: оптимальное (математическое) программирование, в том числе методы ветвей и границ, сетевые методы планирования и управления, программно-целевые методы планирования и управления, теорию и методы управления запасами, теорию массового обслуживания, теорию игр, теорию и методы принятия решений, теорию расписаний. В оптимальное (математическое) программирование входят в свою очередь линейное программирование, нелинейное программирование, динамическое программирование, дискретное (целочисленное) программирование, дробно-линейное программирование, параметрическое программирование, сепарабельное программирование, стохастическое программирование, геометрическое программирование;
• методы и дисциплины, специфичные отдельно как для централизованно планируемой экономики, так и для рыночной (конкурентной) экономики. К первым можно отнести теорию оптимального функционирования экономики, оптимальное планирование, теорию оптимального ценообразования, модели материально-технического снабжения и др. Ко вторым — методы, позволяющие разработать модели свободной конкуренции, модели капиталистического цикла, модели монополии, модели индикативного планирования, модели теории фирмы и т.д. Многие из методов, разработанных для централизованно планируемой экономики, могут оказаться полезными и при экономико-математическом моделировании в условиях рыночной экономики;
• методы экспериментального изучения экономических явлений. К ним относят, как правило, математические методы анализа и планирования экономических экспериментов, методы машинной имитации (имитационное моделирование), деловые игры. Сюда можно отвести также и методы экспертных оценок, разработанные для оценки явлений, не поддающихся непосредственному измерению. Перейдем теперь к вопросам классификации экономико-математических моделей, другими словами, математических моделей социально-экономических систем и процессов. Единой системы классификации таких моделей в настоящее время также не существует, однако обычно выделяют более десяти основных признаков их классификации, или классификационных рубрик. Рассмотрим некоторые из этих рубрик.
По общему целевому назначению экономико-математические модели делятся на теоретико-аналитические,используемые при изучении общих свойств и закономерностей экономических процессов, и прикладные,применяемые в решении конкретных экономических задач анализа, прогнозирования и управления.
По степени агрегирования объектов моделирования модели разделяются на макроэкономические и микроэкономические.Хотя между ними и нет четкого разграничения, к первым из них относят модели, отражающие функционирование экономики как единого целого, в то время как микроэкономические модели связаны, как правило, с такими звеньями экономики, как предприятия и фирмы.
Экономико-математические модели могут классифицироваться также по характеристике математических объектов, включенных в модель, другими словами, по типу математического аппарата, используемого в модели. По этому признаку могут быть выделены матричные модели, модели линейного и нелинейного программирования, корреляционно-регрессионные модели, модели теории массового обслуживания, модели сетевого планирования и управления, модели теории игр и т.д.
4. Метод линейного программирования в задачах оптимизации плана производства
Линейное программирование – это метод выбора не отрицательных значений переменных минимизирующих или максимизирующих значения линейной целевой функции, при наличии ограничений.
При небольшой размерности переменных до 10-ти в задачах линейного программирования (ЛП) используются итерационные процедуры ввиде конечного числа шагов, пи решении системы линейных уравнений, которые получили название симплексный метод.
Симплекс – многогранник.
Симплексный метод – это совокупность итерации, совершаемая ЛПР от отправного наихудшего варианта целевой функции к экстремальному значению целевой функции, при заданной системе ограничений; в качестве экстремума минимальное или максимальное значение целевой функции. При этом целевая функция и задача ЛП обладают свойством двойственности (т.е. минимум целевой функции может быть всегда заменен максимумом, путем смены знаков самой целевой функции).
Использование графического способа удобно только при решении задач ЛП с двумя переменными. При большем числе переменных необходимо применение алгебраического аппарата. Рассмотрим общий метод решения задач ЛП, называемый симплекс-методом.
Информация, которую можно получить с помощью симплекс-метода, не ограничивается лишь оптимальными значениями переменных. Симплекс-метод фактически позволяет дать экономическую интерпретацию полученного решения и провести анализ модели на чувствительность.
Процесс решения задачи линейного программирования носит итерационный характер: однотипные вычислительные процедуры в определенной последовательности повторяются до тех пор, пока не будет получено оптимальное решение. Процедуры, реализуемые в рамках симплекс-метода, требуют применения вычислительных машин - мощного средства решения задач линейного программирования.
Симплекс-метод - это характерный пример итерационных вычислений, используемых при решении большинства оптимизационных задач.
Рассмотрим использование симплексного метода ЛП на примере задач оптимизации плана производства.
Пример №1:
Условие задачи (постановка):
Найти план производства предприятия обеспечивающий максимум прибыли.
Предприятие производит два вида продукции в трех цехах:
А 80
Б 60
В 100
Установлено соответственно: 80;60 и 100 единиц оборудования.
Нормы использования оборудования для производства за 1 час единицы продукции представлены в таблице в машино/часах:
Прибыль первого вида продукции 10 рублей
Прибыль единицы второй продукции 8 рублей
Требуется определить объем выпуска первого и второго вида продукции доставляющего максимум прибыли.
Решение:
1. Составляем модель.
Пусть х1искомый объемu1продукции первого вида;
х2-u2объем выпуска второго вида продукции.
Цель: максимальная прибыль.
Модель:
10х1– прибыль от реализацииuпервого вида продукции
8х2– прибыль от реализацииuвторого вида.
Целевая функцияL(х1х2) = С1х1+ С2х2= 10х1+ 8х2
С1= 10; С2= 8 – коэффициенты при переменных в целевой функции.